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Background

We are studying functions on the vertices of square tilings.
A square tiling is defined broadly as a connected set of
squares in the plane with disjoint interiors and whose
edges are parallel to the coordinate axes.
This project works with subsets of the regular square
lattice Z2.

A tiling S is a subtiling of a tiling T if the set of its squares
is a subset of the set of T ’s.
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Background

Definition
The oscillation osc(u, t) of a function on a square t is the
difference between the maximum and minimum values on that
square.

Definition
The energy E(u) of a function on a tiling is the sum over all
squares t in that tiling of (osc(u, t))2.

E(u) =
∑

t

(osc(u, t))2
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Calculating the Energy

Example

gives the energy

E(u) = (5 − 1)2 + (6 − 0)2 + (4 − 0)2 + (6 − 0)2 = 104.
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Background

Definition
A function on a finite square tiling is called tiling-harmonic
if its energy is minimized among all functions on that tiling
with the same boundary values.
A function on an infinite tiling is tiling-harmonic if it is
tiling-harmonic on all finite subtilings.

Remark
Given a tiling and a set of boundary values, tiling-harmonic
functions are not necessarily unique.
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A Tiling-Harmonic Function

Example



Background Conjectures Results Tiling vs Graph Harmonic Future Work Conclusion

Another Tiling-Harmonic Function

Theorem
The function f (x , y) = y is tiling-harmonic.
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Graph Harmonic Functions

Definition
A function on a square tiling is called graph-harmonic if the
value at each vertex is the average of the values of its
neighbors.

This is the discrete analogue to the harmonic functions of
complex analysis.
Given a set of boundary values, such a function is unique.
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Two Main Conjectures

Conjecture (Liouville’s Theorem for TH Functions)
A bounded tiling-harmonic function on the regular lattice grid
(Z2) must be constant.

Liouville’s is a major theorem for harmonic functions.
This theorem serves as a "simpler version" of the second,
more important conjecture.

Conjecture
A tiling-harmonic function on the upper half-plane that vanishes
along the x-axis must be proportional to y.
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Motivation

The second conjecture may provide an alternative proof of
the quasisymmetric rigidity of square Sierpinski carpets.
Tiling-harmonic functions are also interesting combinatorial
objects in their own right.
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Results — Harnack’s Inequality

Conjecture (Harnack’s Inequality)
On a nonnegative tiling-harmonic function, the ratio of the
values on two points a fixed distance r apart is bounded.

Proving Harnack’s Inequality would be a major step toward
proving Liouville’s Theorem.
Harnack’s Inequality is known for graph harmonic
functions.
We have strong experimental evidence that the maximum
ratio for a tiling-harmonic function is bounded by that of the
graph harmonic function with the same boundary values.
A proof of this bound would imply Harnack’s Inequality for
tiling-harmonic functions.
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Results — Maximum Modulus Principle

Theorem (Maximum Modulus Principle)
On an m x n rectangular grid with m,n ≥ 4, if the maximum
value occurs on the interior, then the entire set of interior values
is constant.

There is an analogous theorem for graph-harmonic
functions.

Example
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Results — Limiting Property

Theorem
The limit of a sequence of tiling-harmonic functions is itself
tiling-harmonic.

Thus the set of tiling-harmonic functions is closed.
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Results — Oscillating Boundary Values

Theorem
For every boundary square, consider the range of the boundary
values on that square. If the intersection of these ranges is
nonempty, then the only tiling-harmonic functions with these
boundary values are constant on the interior.
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Tiling vs Graph Harmonic — Similarities
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Tiling vs Graph Harmonic — Differences
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Tiling vs Graph Harmonic — Random Boundary
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Tiling vs Graph Harmonic — Random Boundary
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Future Goals

Proof of Harnack’s Inequality
Proof of Maximum Modulus Principle for oscillations
Explore the Boundary Harnack Principle
Alternative necessary and/or sufficient conditions for
tiling-harmonic functions
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