

Tiling-Harmonic Functions

Jacob Klegar

mentored by Prof. Sergiy Merenkov, CCNY-CUNY

Fifth Annual PRIMES Conference May 16, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Background	Conjectures	Results	Tiling vs Graph Harmonic	Future Work	Conclusion
Background					

- We are studying functions on the vertices of square tilings.
- A square tiling is defined broadly as a connected set of squares in the plane with disjoint interiors and whose edges are parallel to the coordinate axes.
- This project works with subsets of the regular square lattice \mathbb{Z}^2 .

• A tiling *S* is a subtiling of a tiling *T* if the set of its squares is a subset of the set of *T*'s.

- We are studying functions on the vertices of square tilings.
- A square tiling is defined broadly as a connected set of squares in the plane with disjoint interiors and whose edges are parallel to the coordinate axes.
- This project works with subsets of the regular square lattice \mathbb{Z}^2 .

• A tiling *S* is a subtiling of a tiling *T* if the set of its squares is a subset of the set of *T*'s.

- We are studying functions on the vertices of square tilings.
- A square tiling is defined broadly as a connected set of squares in the plane with disjoint interiors and whose edges are parallel to the coordinate axes.
- This project works with subsets of the regular square lattice Z².

• A tiling *S* is a subtiling of a tiling *T* if the set of its squares is a subset of the set of *T*'s.

- We are studying functions on the vertices of square tilings.
- A square tiling is defined broadly as a connected set of squares in the plane with disjoint interiors and whose edges are parallel to the coordinate axes.
- This project works with subsets of the regular square lattice Z².

• A tiling *S* is a subtiling of a tiling *T* if the set of its squares is a subset of the set of *T*'s.

The oscillation osc(u, t) of a function on a square *t* is the difference between the maximum and minimum values on that square.

Definition

The energy E(u) of a function on a tiling is the sum over all squares t in that tiling of $(osc(u, t))^2$.

$$E(u) = \sum_{t} (osc(u, t))^2$$

The oscillation osc(u, t) of a function on a square *t* is the difference between the maximum and minimum values on that square.

Definition

The energy E(u) of a function on a tiling is the sum over all squares *t* in that tiling of $(osc(u, t))^2$.

$$E(u) = \sum_{t} (osc(u, t))^2$$

Calculating the Energy

Example

gives the energy

$$E(u) = (5-1)^2 + (6-0)^2 + (4-0)^2 + (6-0)^2 = 104.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Calculating the Energy

Example

gives the energy

$$E(u) = (5-1)^2 + (6-0)^2 + (4-0)^2 + (6-0)^2 = 104.$$

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

- A function on a finite square tiling is called tiling-harmonic if its energy is minimized among all functions on that tiling with the same boundary values.
- A function on an infinite tiling is tiling-harmonic if it is tiling-harmonic on all finite subtilings.

Remark

Given a tiling and a set of boundary values, tiling-harmonic functions are not necessarily unique.

- A function on a finite square tiling is called tiling-harmonic if its energy is minimized among all functions on that tiling with the same boundary values.
- A function on an infinite tiling is tiling-harmonic if it is tiling-harmonic on all finite subtilings.

Remark

Given a tiling and a set of boundary values, tiling-harmonic functions are not necessarily unique.

- A function on a finite square tiling is called tiling-harmonic if its energy is minimized among all functions on that tiling with the same boundary values.
- A function on an infinite tiling is tiling-harmonic if it is tiling-harmonic on all finite subtilings.

Remark

Given a tiling and a set of boundary values, tiling-harmonic functions are not necessarily unique.

A Tiling-Harmonic Function

Another Tiling-Harmonic Function

Theorem

The function f(x, y) = y is tiling-harmonic.

Graph Harmonic Functions

Definition

A function on a square tiling is called graph-harmonic if the value at each vertex is the average of the values of its neighbors.

- This is the discrete analogue to the harmonic functions of complex analysis.
- Given a set of boundary values, such a function is unique.

Graph Harmonic Functions

Definition

A function on a square tiling is called graph-harmonic if the value at each vertex is the average of the values of its neighbors.

 This is the discrete analogue to the harmonic functions of complex analysis.

Given a set of boundary values, such a function is unique.

Graph Harmonic Functions

Definition

A function on a square tiling is called graph-harmonic if the value at each vertex is the average of the values of its neighbors.

- This is the discrete analogue to the harmonic functions of complex analysis.
- Given a set of boundary values, such a function is unique.

Conjecture (Liouville's Theorem for TH Functions)

A bounded tiling-harmonic function on the regular lattice grid (\mathbb{Z}^2) must be constant.

- Liouville's is a major theorem for harmonic functions.
- This theorem serves as a "simpler version" of the second, more important conjecture.

Conjecture

A tiling-harmonic function on the upper half-plane that vanishes along the x-axis must be proportional to y.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Conjecture (Liouville's Theorem for TH Functions) A bounded tiling-harmonic function on the regular lattice grid (\mathbb{Z}^2) must be constant.

• Liouville's is a major theorem for harmonic functions.

• This theorem serves as a "simpler version" of the second, more important conjecture.

Conjecture

A tiling-harmonic function on the upper half-plane that vanishes along the x-axis must be proportional to y.

Conjecture (Liouville's Theorem for TH Functions)

A bounded tiling-harmonic function on the regular lattice grid (\mathbb{Z}^2) must be constant.

- Liouville's is a major theorem for harmonic functions.
- This theorem serves as a "simpler version" of the second, more important conjecture.

Conjecture

A tiling-harmonic function on the upper half-plane that vanishes along the x-axis must be proportional to y.

Conjecture (Liouville's Theorem for TH Functions) A bounded tiling-harmonic function on the regular lattice grid (\mathbb{Z}^2) must be constant.

- Liouville's is a major theorem for harmonic functions.
- This theorem serves as a "simpler version" of the second, more important conjecture.

Conjecture

A tiling-harmonic function on the upper half-plane that vanishes along the x-axis must be proportional to y.

- The second conjecture may provide an alternative proof of the quasisymmetric rigidity of square Sierpinski carpets.
- Tiling-harmonic functions are also interesting combinatorial objects in their own right.

- The second conjecture may provide an alternative proof of the quasisymmetric rigidity of square Sierpinski carpets.
- Tiling-harmonic functions are also interesting combinatorial objects in their own right.

Conjecture (Harnack's Inequality)

- Proving Harnack's Inequality would be a major step toward proving Liouville's Theorem.
- Harnack's Inequality is known for graph harmonic functions.
- We have strong experimental evidence that the maximum ratio for a tiling-harmonic function is bounded by that of the graph harmonic function with the same boundary values.
- A proof of this bound would imply Harnack's Inequality for tiling-harmonic functions.

Conjecture (Harnack's Inequality)

- Proving Harnack's Inequality would be a major step toward proving Liouville's Theorem.
- Harnack's Inequality is known for graph harmonic functions.
- We have strong experimental evidence that the maximum ratio for a tiling-harmonic function is bounded by that of the graph harmonic function with the same boundary values.
- A proof of this bound would imply Harnack's Inequality for tiling-harmonic functions.

Conjecture (Harnack's Inequality)

- Proving Harnack's Inequality would be a major step toward proving Liouville's Theorem.
- Harnack's Inequality is known for graph harmonic functions.
- We have strong experimental evidence that the maximum ratio for a tiling-harmonic function is bounded by that of the graph harmonic function with the same boundary values.
- A proof of this bound would imply Harnack's Inequality for tiling-harmonic functions.

Conjecture (Harnack's Inequality)

- Proving Harnack's Inequality would be a major step toward proving Liouville's Theorem.
- Harnack's Inequality is known for graph harmonic functions.
- We have strong experimental evidence that the maximum ratio for a tiling-harmonic function is bounded by that of the graph harmonic function with the same boundary values.
- A proof of this bound would imply Harnack's Inequality for tiling-harmonic functions.

Conjecture (Harnack's Inequality)

- Proving Harnack's Inequality would be a major step toward proving Liouville's Theorem.
- Harnack's Inequality is known for graph harmonic functions.
- We have strong experimental evidence that the maximum ratio for a tiling-harmonic function is bounded by that of the graph harmonic function with the same boundary values.
- A proof of this bound would imply Harnack's Inequality for tiling-harmonic functions.

Results — Maximum Modulus Principle

Theorem (Maximum Modulus Principle)

On an $m \times n$ rectangular grid with $m, n \ge 4$, if the maximum value occurs on the interior, then the entire set of interior values is constant.

• There is an analogous theorem for graph-harmonic functions.

Results — Maximum Modulus Principle

Theorem (Maximum Modulus Principle)

On an $m \times n$ rectangular grid with $m, n \ge 4$, if the maximum value occurs on the interior, then the entire set of interior values is constant.

• There is an analogous theorem for graph-harmonic functions.

Results — Maximum Modulus Principle

Theorem (Maximum Modulus Principle)

On an $m \times n$ rectangular grid with $m, n \ge 4$, if the maximum value occurs on the interior, then the entire set of interior values is constant.

• There is an analogous theorem for graph-harmonic functions.

Results — Limiting Property

Theorem

The limit of a sequence of tiling-harmonic functions is itself tiling-harmonic.

• Thus the set of tiling-harmonic functions is closed.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Results — Limiting Property

Theorem

The limit of a sequence of tiling-harmonic functions is itself tiling-harmonic.

• Thus the set of tiling-harmonic functions is closed.

Theorem

For every boundary square, consider the range of the boundary values on that square. If the intersection of these ranges is nonempty, then the only tiling-harmonic functions with these boundary values are constant on the interior.

Background

onjectures

Results

Tiling vs Graph Harmonic

Future Work

Conclusion

Tiling vs Graph Harmonic — Similarities

 Background

Results

Tiling vs Graph Harmonic

monic F

Future Work

Conclusion

Tiling vs Graph Harmonic — Differences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tiling vs Graph Harmonic — Random Boundary

Background

Tiling vs Graph Harmonic — Random Boundary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Proof of Harnack's Inequality

- Proof of Maximum Modulus Principle for oscillations
- Explore the Boundary Harnack Principle
- Alternative necessary and/or sufficient conditions for tiling-harmonic functions

- Proof of Harnack's Inequality
- Proof of Maximum Modulus Principle for oscillations
- Explore the Boundary Harnack Principle
- Alternative necessary and/or sufficient conditions for tiling-harmonic functions

- Proof of Harnack's Inequality
- Proof of Maximum Modulus Principle for oscillations
- Explore the Boundary Harnack Principle
- Alternative necessary and/or sufficient conditions for tiling-harmonic functions

- Proof of Harnack's Inequality
- Proof of Maximum Modulus Principle for oscillations
- Explore the Boundary Harnack Principle
- Alternative necessary and/or sufficient conditions for tiling-harmonic functions

Acknowledgements

Many thanks to:

- The MIT PRIMES Program
- Prof. Sergiy Merenkov, CCNY-CUNY, my mentor
- Matt Getz, a CCNY Graduate Student with whom I have been working on this project
- Prof. Tanya Khovanova
- my school, Choate Rosemary Hall, especially Dr. Matthew Bardoe and Mr. Samuel Doak

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and My Parents.